基于Logistic和学习曲线模型的中国电源结构预测
    点此下载全文
引用本文:袁晓玲,范玉仙.基于Logistic和学习曲线模型的中国电源结构预测[J].湖南大学学报社会科学版,2013,(4):51-55
摘要点击次数: 1185
全文下载次数: 63
作者单位
袁晓玲,范玉仙 (西安交通大学 经济与金融学院陕西 西安710061) 
中文摘要:可再生能源发电是缓解电力短缺、化石能源过度消耗和环境污染多重压力的重要突破口。Logistic模型和学习曲线模型能很好地刻画新能源发电技术创新过程中累积产量不断接近最大生产极限的过程以及发电成本降低的过程。预测结果显示,未来40年风电和太阳能发电发展速度较快,其中风电的装机容量从2040年开始超过水电,但以火电为主的电源结构将持续。
中文关键词:Logistic模型  学习曲线模型  电源结构  可再生能源
 
Forecast of Power Source Structure in China Based on the Logistic & Learning Curve Model
Abstract:Promoting the Renewable Energy power is one of the ways to abate resources shortage, wanton depletion of chemistry and oil energy and environmental pollution. Logistic & Learning Curve Model can precisely describe the process that cumulative production is near to maximum limit and that the power cost is reduced. The results are as follows: wind power and solar power generation will develop quickly in the next 40 years, and from 2040, installed capacity of wind power begins to dominate hydropower, but fossil power remains the mainstay of power generation.
keywords:Logistic model  learning curve model  power source structure  regenerated energy
查看全文   查看/发表评论   下载pdf阅读器